4

这是一个 Park-Miller 伪随机数生成器:

def gen1(a=783):
    while True:
        a = (a * 48271) % 0x7fffffff
        yield a

783只是一个任意的种子。这48271是 Park 和 Miller 在原始论文中推荐的系数(PDF:Park, Stephen K.;Miller, Keith W. (1988). “Random Number Generators: Good Ones are Hard To Find”

我想提高这个LCG的性能。文献描述了一种使用按位技巧(来源)避免除法的方法:

素数模数需要计算双倍宽度乘积和显式缩减步骤。如果使用的模数刚好小于 2 的幂(梅森素数 2 31 -1 和 2 61 -1 很流行,2 32 -5 和 2 64 -59 也是如此),减少模 m = 2 e - d 可以比使用恒等式 2 e ≡ d (mod m)的一般双宽度除法更便宜。

注意到模数0x7fffffff实际上是梅森素数 2**32 - 1,这是用 Python 实现的想法:

def gen2(a=783):
    while True:
        a *= 48271
        a = (a & 0x7fffffff) + (a >> 31)
        a = (a & 0x7fffffff) + (a >> 31)
        yield a

基本基准测试脚本:

import time, sys

g1 = gen1()
g2 = gen2()

for g in g1, g2:
    t0 = time.perf_counter()
    for i in range(int(sys.argv[1])): next(g)
    print(g.__name__, time.perf_counter() - t0)

在 pypy (7.3.0 @ 3.6.9) 中性能得到了改进,例如生成 100 M 项:

$ pypy lcg.py 100000000
gen1 0.4366550260456279
gen2 0.3180829349439591

不幸的是,在 CPython (3.9.0 / Linux) 中性能实际上有所下降:

$ python3 lcg.py 100000000
gen1 20.650125587941147
gen2 26.844335232977755

我的问题:

  • 为什么通常被吹捧为优化的按位算术实际上比 CPython 中的模运算还要慢?
  • 您能否以其他方式在 CPython 下提高此 PRNG 的性能,也许使用 numpy 或ctypes

请注意,此处不一定需要任意精度整数,因为此生成器永远不会产生长于:

>>> 0x7fffffff.bit_length()
31
4

1 回答 1

1

我的猜测是,在 CPython 版本中,大部分时间用于开销(解释器、动态调度)而不是实际的算术运算。所以增加更多的步骤(即更多的开销)并没有多大帮助。

PyPy 的运行时间看起来更像是使用 C 整数进行 10^8 模运算所需的时间,因此它可能能够使用 JIT,它没有太多开销,因此我们可以看到算术运算的加速.

减少开销的一种可能方法是使用 Cython(这里是我对 Cython 如何帮助减少解释器和调度开销的调查),并且为生成器开箱即用:

%%cython
def gen_cy1(int a=783):
    while True:
        a = (a * 48271) % 0x7fffffff
        yield a
        
def gen_cy2(int a=783):
    while True:
        a *= 48271
        a = (a & 0x7fffffff) + (a >> 31)
        a = (a & 0x7fffffff) + (a >> 31)
        yield a

我使用以下功能进行测试:

def run(gen,N):
    for i in range(N): next(gen)

和测试表明:

N=10**6
%timeit run(gen1(),N)   #  246 ms
%timeit run(gen2(),N)   #  387 ms
%timeit run(gen_cy1(),N)   # 114 ms
%timeit run(gen_cy2(),N)   # 107 ms

两个 Cython 版本都同样快(并且比原始版本快一些),因为具有更多操作,实际上并不会花费更多开销,因为算术运算是使用 C-int 完成的,而不再使用 Python-ints。

但是,如果一个人真的很想获得最佳性能 - 使用生成器是一个杀手,因为这意味着很多开销(例如,参见这个SO-post)。

只是为了给人一种感觉,如果不使用 Python 生成器可能会发生什么 - 生成所有数字的函数(但不将它们转换为 Python 对象,因此没有开销):

%%cython
def gen_last_cy1(int n, int a=783):
    cdef int i
    for i in range(n):
        a = (a * 48271) % 0x7fffffff
    return a

def gen_last_cy2(int n, int a=783):
    cdef int i
    for i in range(n):
        a *= 48271
        a = (a & 0x7fffffff) + (a >> 31)
        a = (a & 0x7fffffff) + (a >> 31)
    return a

导致以下时间:

N=10**6
%timeit gen_last_cy1(N)  # 7.21 ms
%timeit gen_last_cy2(N)  # 2.59 ms

这意味着如果不使用发电机,可以节省 90% 以上的运行时间!


我有点惊讶,调整后的第二个版本优于原来的第一个版本。通常,如果可能,C 编译器不会直接执行模运算,而是自己使用位技巧。但是在这里,至少在我的机器上,C 编译器的技巧是次要的。

由 gcc ( ) 为原始版本生成的汇编程序(位于gotbold.org上):-O2

        imull   $48271, %edi, %edi
        movslq  %edi, %rdx
        movq    %rdx, %rax
        salq    $30, %rax
        addq    %rdx, %rax
        movl    %edi, %edx
        sarl    $31, %edx
        sarq    $61, %rax
        subl    %edx, %eax
        movl    %eax, %edx
        sall    $31, %edx
        subl    %eax, %edx
        movl    %edi, %eax
        subl    %edx, %eax

可以看到,没有div.

这里是第二个版本的汇编器(操作少得多):

        imull   $48271, %edi, %eax
        movl    %eax, %edx
        sarl    $31, %eax
        andl    $2147483647, %edx
        addl    %edx, %eax
        movl    %eax, %edx
        sarl    $31, %eax
        andl    $2147483647, %edx
        addl    %edx, %eax

显然,更少的操作并不总是意味着更快的代码,但在这种情况下似乎确实如此。

于 2021-01-27T05:14:13.790 回答