我有一个相当重要的函数,我想区分它,autograd
但我还不够一个 numpy 向导来弄清楚我们如何在没有数组分配的情况下做到这一点。
我也很抱歉,为了能够独立运行,我不得不让这个例子难以置信地做作和毫无意义。我正在使用的实际代码是针对非线性有限元的,并且正在尝试为复杂的非线性系统计算雅可比。
import autograd.numpy as anp
from autograd import jacobian
def alpha(x):
return anp.exp(-(x - 10) ** 2) / (x + 1)
def f(x):
# Matrix getting constructed
k = anp.zeros((x.shape[0], x.shape[0]))
# loop over some random 3 dimensional vectors
for element in anp.random.randint(0, x.shape[0], (x.shape[0], 3)):
# select 3 values from x
x_ijk = anp.array([[x[i] for i in element]])
norm = anp.linalg.norm(
x_ijk @ anp.vstack((element, element)).transpose()
)
# make some matrix from the element
m = element.reshape(3, 1) @ element.reshape(1, 3)
# alpha is an arbitrary differentiable function R -> R
alpha_value = alpha(norm)
# combine m matricies into k scaling by alpha_value
n = m.shape[0]
for i in range(n):
for j in range(n):
k[element[i], element[j]] += m[i, j] * alpha_value
return k @ x
print(jacobian(f)(anp.random.rand(10)))
# And course we get an error
# k[element[i], element[j]] += m[i, j] * alpha_value
# ValueError: setting an array element with a sequence.
我不太明白这条消息,因为没有发生类型错误。我认为它必须来自分配。
写完上面的内容后,我做了一个简单的切换,PyTorch
代码运行得很好。但我仍然更喜欢使用autograd
#pytorch version
import torch
from torch.autograd.gradcheck import zero_gradients
def alpha(x):
return torch.exp(x)
def f(x):
# Matrix getting constructed
k = torch.zeros((x.shape[0], x.shape[0]))
# loop over some random 3 dimensional vectors
for element in torch.randint(0, x.shape[0], (x.shape[0], 3)):
# select 3 values from x
x_ijk = torch.tensor([[1. if n == e else 0 for n in range(len(x))] for e in element]) @ x
norm = torch.norm(
x_ijk @ torch.stack((torch.tanh(element.float() + 4), element.float() - 4)).t()
)
m = torch.rand(3, 3)
# alpha is an arbitrary differentiable function R -> R
alpha_value = alpha(norm)
n = m.shape[0]
for i in range(n):
for j in range(n):
k[element[i], element[j]] += m[i, j] * alpha_value
print(k)
return k @ x
x = torch.rand(4, requires_grad=True)
print(x, '\n')
y = f(x)
print(y, '\n')
grads = []
for val in y:
val.backward(retain_graph=True)
grads.append(x.grad.clone())
zero_gradients(x)
if __name__ == '__main__':
print(torch.stack(grads))