0

我正在使用 DBN 算法开发人脸识别系统。在训练数据时,系统会根据 n-epoch 产生错误。我想制作一个基于 n-epoch 的错误图

培训代码

    classifier = SupervisedDBNClassification (hidden_layers_structure=[200, 200],
    learning_rate_rbm=0.0001, 
    learning_rate=0.01,
    n_epochs_rbm=10,
    n_iter_backprop=100,
    batch_size=32,
    activation_function='relu',
    dropout_p = 0.2)

如果我们运行该代码,它将产生

    >> Epoch 84 finished    ANN training loss 0.681700
    >> Epoch 85 finished    ANN training loss 0.682314
    >> Epoch 86 finished    ANN training loss 0.680272
    >> Epoch 87 finished    ANN training loss 0.680542
4

1 回答 1

0

利用history = classifier.fit(x_train, y_train)

# list all data in history
print(history.history.keys())

您可以访问以下所有信息来绘制折线图

history.history['acc'])
history.history['val_acc']
history.history['loss'])
history.history['val_loss']

进一步,请查看此链接

于 2019-07-31T03:44:18.413 回答