对大型数据框进行子集化会给我们留下一个需要重新排序和删除缺失因子的因子变量。一个代表如下:
library(tidyverse)
set.seed(1234)
data <- c("10th Std. Pass", "11th Std. Pass", "12th Std. Pass", "5th Std. Pass",
"6th Std. Pass", "Diploma / certificate course", "Graduate", "No Education")
education <- factor(sample(data, size = 5, replace = TRUE),
levels = c(data, "Data not available"))
survey <- tibble(education)
根据这个答案,下面的代码实现了我们想要的,但我们希望将因素的重新排序和删除集成到我们对调查的管道重新编码中。
recoded_s <- survey %>% mutate(education =
fct_collapse(education,
"None" = "No Education",
"Primary" = c("5th Std. Pass", "6th Std. Pass"),
"Secondary" = c("10th Std. Pass", "11th Std. Pass", "12th Std. Pass"),
"Tertiary" = c("Diploma / certificate course", "Graduate")
))
recoded_s$education
#> [1] Secondary Primary Primary Primary Tertiary
#> Levels: Secondary Primary Tertiary None Data not available
# Re-ordering and dropping variables
factor(recoded_s$education, levels = c("None", "Primary", "Secondary", "Tertiary"))
#> [1] Secondary Primary Primary Primary Tertiary
#> Levels: None Primary Secondary Tertiary
任何指针将不胜感激!