我在 kafka 中创建了一个示例主题,我正在尝试使用以下脚本在 spark 中使用内容:
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import
org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
class Kafkaconsumer {
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "host1:port,host2:port2,host3:port3",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val sparkConf = new SparkConf().setMaster("yarn")
.setAppName("kafka example")
val streamingContext = new StreamingContext(sparkConf, Seconds(10))
val topics = Array("topicname")
val topicsSet = topics.split(",").toSet
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](kafkaParams,topicsSet)
)
stream.print()
stream.map(record => (record.key, record.value))
streamingContext.start()
streamingContext.awaitTermination()
我还包含了执行代码所需的库。
我有以下错误,请告诉我如何解决这个问题。
Error:
Error:(23, 27) wrong number of type parameters for overloaded method value createDirectStream with alternatives:
[K, V, KD <: kafka.serializer.Decoder[K], VD <: kafka.serializer.Decoder[V]](jssc: org.apache.spark.streaming.api.java.JavaStreamingContext, keyClass: Class[K], valueClass: Class[V], keyDecoderClass: Class[KD], valueDecoderClass: Class[VD], kafkaParams: java.util.Map[String,String], topics: java.util.Set[String])org.apache.spark.streaming.api.java.JavaPairInputDStream[K,V] <and>
[K, V, KD <: kafka.serializer.Decoder[K], VD <: kafka.serializer.Decoder[V], R](jssc: org.apache.spark.streaming.api.java.JavaStreamingContext, keyClass: Class[K], valueClass: Class[V], keyDecoderClass: Class[KD], valueDecoderClass: Class[VD], recordClass: Class[R], kafkaParams: java.util.Map[String,String], fromOffsets: java.util.Map[kafka.common.TopicAndPartition,Long], messageHandler: org.apache.spark.api.java.function.Function[kafka.message.MessageAndMetadata[K,V],R])org.apache.spark.streaming.api.java.JavaInputDStream[R] <and>
[K, V, KD <: kafka.serializer.Decoder[K], VD <: kafka.serializer.Decoder[V]](ssc: org.apache.spark.streaming.StreamingContext, kafkaParams: Map[String,String], topics: Set[String])(implicit evidence$19: scala.reflect.ClassTag[K], implicit evidence$20: scala.reflect.ClassTag[V], implicit evidence$21: scala.reflect.ClassTag[KD], implicit evidence$22: scala.reflect.ClassTag[VD])org.apache.spark.streaming.dstream.InputDStream[(K, V)] <and>
[K, V, KD <: kafka.serializer.Decoder[K], VD <: kafka.serializer.Decoder[V], R](ssc: org.apache.spark.streaming.StreamingContext, kafkaParams: Map[String,String], fromOffsets: Map[kafka.common.TopicAndPartition,Long], messageHandler: kafka.message.MessageAndMetadata[K,V] => R)(implicit evidence$14: scala.reflect.ClassTag[K], implicit evidence$15: scala.reflect.ClassTag[V], implicit evidence$16: scala.reflect.ClassTag[KD], implicit evidence$17: scala.reflect.ClassTag[VD], implicit evidence$18: scala.reflect.ClassTag[R])org.apache.spark.streaming.dstream.InputDStream[R]val stream = KafkaUtils.createDirectStream[String, String](