第 1 步:运行生产者以创建示例数据
./bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic stream-test-topic \
--property schema.registry.url=http://localhost:8081 \
--property value.schema='{"type":"record","name":"dealRecord","fields":[{"name":"DEAL_ID","type":"string"},{"name":"DEAL_EXPENSE_CODE","type":"string"},{"name":"DEAL_BRANCH","type":"string"}]}'
样本数据 :
{"DEAL_ID":"deal002", "DEAL_EXPENSE_CODE":"EXP002", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal003", "DEAL_EXPENSE_CODE":"EXP003", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal004", "DEAL_EXPENSE_CODE":"EXP004", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal005", "DEAL_EXPENSE_CODE":"EXP005", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal006", "DEAL_EXPENSE_CODE":"EXP006", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal007", "DEAL_EXPENSE_CODE":"EXP001", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal008", "DEAL_EXPENSE_CODE":"EXP002", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal009", "DEAL_EXPENSE_CODE":"EXP003", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal010", "DEAL_EXPENSE_CODE":"EXP004", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal011", "DEAL_EXPENSE_CODE":"EXP005", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal012", "DEAL_EXPENSE_CODE":"EXP006", "DEAL_BRANCH":"AMSTERDAM"}
步骤 2:打开另一个终端并运行消费者来测试数据。
./bin/kafka-avro-console-consumer --topic stream-test-topic \
--bootstrap-server localhost:9092 \
--property schema.registry.url=http://localhost:8081 \
--from-beginning
步骤 3:打开另一个终端并运行生产者。
./bin/kafka-avro-console-producer \
--broker-list localhost:9092 --topic expense-test-topic \
--property "parse.key=true" \
--property "key.separator=:" \
--property schema.registry.url=http://localhost:8081 \
--property key.schema='"string"' \
--property value.schema='{"type":"record","name":"dealRecord","fields":[{"name":"EXPENSE_CODE","type":"string"},{"name":"EXPENSE_DESC","type":"string"}]}'
数据:
"pk1":{"EXPENSE_CODE":"EXP001", "EXPENSE_DESC":"Regulatory Deposit"}
"pk2":{"EXPENSE_CODE":"EXP002", "EXPENSE_DESC":"ABC - Sofia"}
"pk3":{"EXPENSE_CODE":"EXP003", "EXPENSE_DESC":"Apple Corporation"}
"pk4":{"EXPENSE_CODE":"EXP004", "EXPENSE_DESC":"Confluent Europe"}
"pk5":{"EXPENSE_CODE":"EXP005", "EXPENSE_DESC":"Air India"}
"pk6":{"EXPENSE_CODE":"EXP006", "EXPENSE_DESC":"KLM International"}
第 4 步:打开另一个终端并运行消费者
./bin/kafka-avro-console-consumer --topic expense-test-topic \
--bootstrap-server localhost:9092 \
--property "parse.key=true" \
--property "key.separator=:" \
--property schema.registry.url=http://localhost:8081 \
--from-beginning
第 5 步:登录到 KSQL 客户端。
./bin/ksql http://localhost:8088
创建以下流和表并运行连接查询。
KSQL:
溪流:
CREATE STREAM SAMPLE_STREAM
(DEAL_ID VARCHAR, DEAL_EXPENSE_CODE varchar, DEAL_BRANCH VARCHAR)
WITH (kafka_topic='stream-test-topic',value_format='AVRO', key = 'DEAL_ID');
桌子:
CREATE TABLE SAMPLE_TABLE
(EXPENSE_CODE varchar, EXPENSE_DESC VARCHAR)
WITH (kafka_topic='expense-test-topic',value_format='AVRO', key = 'EXPENSE_CODE');
以下是输出:
ksql> SELECT STREAM1.DEAL_EXPENSE_CODE, TABLE1.EXPENSE_DESC
from SAMPLE_STREAM STREAM1 LEFT JOIN SAMPLE_TABLE TABLE1
ON STREAM1.DEAL_EXPENSE_CODE = TABLE1.EXPENSE_CODE
WINDOW TUMBLING (SIZE 3 MINUTE)
GROUP BY STREAM1.DEAL_EXPENSE_CODE, TABLE1.EXPENSE_DESC;
EXP001 | null
EXP001 | null
EXP002 | null
EXP003 | null
EXP004 | null
EXP005 | null
EXP006 | null
EXP002 | null
EXP002 | null