37

我有一个模拟,它有一个巨大的聚合并在中间组合步骤。我使用 plyr 的 ddply() 函数对这个过程进行了原型设计,该函数非常适合我的大部分需求。但是我需要这个聚合步骤更快,因为我必须运行 10K 模拟。我已经在并行扩展模拟,但如果这一步更快,我可以大大减少我需要的节点数量。

这是我正在尝试做的合理简化:

library(Hmisc)

# Set up some example data
year <-    sample(1970:2008, 1e6, rep=T)
state <-   sample(1:50, 1e6, rep=T)
group1 <-  sample(1:6, 1e6, rep=T)
group2 <-  sample(1:3, 1e6, rep=T)
myFact <-  rnorm(100, 15, 1e6)
weights <- rnorm(1e6)
myDF <- data.frame(year, state, group1, group2, myFact, weights)

# this is the step I want to make faster
system.time(aggregateDF <- ddply(myDF, c("year", "state", "group1", "group2"),
                     function(df) wtd.mean(df$myFact, weights=df$weights)
                                 )
           )

感谢所有提示或建议!

4

5 回答 5

37

您可以使用不可变的数据框代替普通的 R 数据框,它在您设置子集时返回指向原始数据框的指针,并且可以更快:

idf <- idata.frame(myDF)
system.time(aggregateDF <- ddply(idf, c("year", "state", "group1", "group2"),
   function(df) wtd.mean(df$myFact, weights=df$weights)))

#    user  system elapsed 
# 18.032   0.416  19.250 

如果我要编写一个完全针对这种情况定制的 plyr 函数,我会做这样的事情:

system.time({
  ids <- id(myDF[c("year", "state", "group1", "group2")], drop = TRUE)
  data <- as.matrix(myDF[c("myFact", "weights")])
  indices <- plyr:::split_indices(seq_len(nrow(data)), ids, n = attr(ids, "n"))

  fun <- function(rows) {
    weighted.mean(data[rows, 1], data[rows, 2])
  }
  values <- vapply(indices, fun, numeric(1))

  labels <- myDF[match(seq_len(attr(ids, "n")), ids), 
    c("year", "state", "group1", "group2")]
  aggregateDF <- cbind(labels, values)
})

# user  system elapsed 
# 2.04    0.29    2.33 

它的速度要快得多,因为它避免了复制数据,只在计算时提取每次计算所需的子集。将数据转换为矩阵形式可以提高速度,因为矩阵子集比数据帧子集快得多。

于 2010-09-10T15:25:36.247 回答
28

进一步的 2 倍加速和更简洁的代码:

library(data.table)
dtb <- data.table(myDF, key="year,state,group1,group2")
system.time( 
  res <- dtb[, weighted.mean(myFact, weights), by=list(year, state, group1, group2)] 
)
#   user  system elapsed 
#  0.950   0.050   1.007 

我的第一篇文章,所以请善待;)


data.tablev1.9.2 开始,setDT导出的函数将通过引用data.frame转换为(按照说法——所有函数都通过引用修改对象)。这意味着没有不必要的复制,因此速度很快。你可以计时,但它会疏忽。data.table data.tableset*

require(data.table)
system.time({
  setDT(myDF)
  res <- myDF[, weighted.mean(myFact, weights), 
             by=list(year, state, group1, group2)] 
})
#   user  system elapsed 
#  0.970   0.024   1.015 

这与上面的 OP 解决方案的 1.264 秒相反,其中data.table(.)用于创建dtb.

于 2010-10-29T20:37:29.237 回答
10

我会用基础 R 来分析

g <- with(myDF, paste(year, state, group1, group2))
x <- with(myDF, c(tapply(weights * myFact, g, sum) / tapply(weights, g, sum)))
aggregateDF <- myDF[match(names(x), g), c("year", "state", "group1", "group2")]
aggregateDF$V1 <- x

在我的机器上,它需要 5 秒,而原始代码需要 67 秒。

编辑 刚刚发现另一个加速rowsum功能:

g <- with(myDF, paste(year, state, group1, group2))
X <- with(myDF, rowsum(data.frame(a=weights*myFact, b=weights), g))
x <- X$a/X$b
aggregateDF2 <- myDF[match(rownames(X), g), c("year", "state", "group1", "group2")]
aggregateDF2$V1 <- x

需要3秒!

于 2010-09-10T16:04:20.663 回答
7

您使用的是最新版本的 plyr(注意:这还没有适用于所有 CRAN 镜像)?如果是这样,您可以并行运行它。

这是 llply 示例,但同样适用于 ddply:

  x <- seq_len(20)
  wait <- function(i) Sys.sleep(0.1)
  system.time(llply(x, wait))
  #  user  system elapsed 
  # 0.007   0.005   2.005 

  library(doMC)
  registerDoMC(2) 
  system.time(llply(x, wait, .parallel = TRUE))
  #  user  system elapsed 
  # 0.020   0.011   1.038 

编辑:

好吧,其他循环方法更糟糕,所以这可能需要 (a) C/C++ 代码或 (b) 更根本地重新考虑你的工作方式。我什至没有尝试使用by(),因为这在我的经验中非常慢。

groups <- unique(myDF[,c("year", "state", "group1", "group2")])
system.time(
aggregateDF <- do.call("rbind", lapply(1:nrow(groups), function(i) {
   df.tmp <- myDF[myDF$year==groups[i,"year"] & myDF$state==groups[i,"state"] & myDF$group1==groups[i,"group1"] & myDF$group2==groups[i,"group2"],]
   cbind(groups[i,], wtd.mean(df.tmp$myFact, weights=df.tmp$weights))
}))
)

aggregateDF <- data.frame()
system.time(
for(i in 1:nrow(groups)) {
   df.tmp <- myDF[myDF$year==groups[i,"year"] & myDF$state==groups[i,"state"] & myDF$group1==groups[i,"group1"] & myDF$group2==groups[i,"group2"],]
   aggregateDF <- rbind(aggregateDF, data.frame(cbind(groups[i,], wtd.mean(df.tmp$myFact, weights=df.tmp$weights))))
}
)
于 2010-09-10T14:49:32.887 回答
5

当应用的函数有多个向量参数时,我通常使用带有 tapply 的索引向量:

system.time(tapply(1:nrow(myDF), myDF[c('year', 'state', 'group1', 'group2')], function(s) weighted.mean(myDF$myFact[s], myDF$weights[s])))
# user  system elapsed 
# 1.36    0.08    1.44 

我使用了一个简单的包装器,它等效但隐藏了混乱:

tmapply(list(myDF$myFact, myDF$weights), myDF[c('year', 'state', 'group1', 'group2')], weighted.mean)

编辑以包括 tmaply 以在下面发表评论:

tmapply = function(XS, INDEX, FUN, ..., simplify=T) {
  FUN = match.fun(FUN)
  if (!is.list(XS))
    XS = list(XS)
  tapply(1:length(XS[[1L]]), INDEX, function(s, ...)
    do.call(FUN, c(lapply(XS, `[`, s), list(...))), ..., simplify=simplify)
}
于 2010-09-14T19:21:08.803 回答