4

假设我有一组随机的 X,Y 点:

x = np.array(range(0,50))
y = np.random.uniform(low=0.0, high=40.0, size=200)
y = map((lambda a: a[0] + a[1]), zip(x,y))
plt.scatter(x,y)

在此处输入图像描述

假设我为使用线性回归y的每个值建模为高斯,我如何估计后验预测,即每个(可能)值?xp(y|x)x

有没有用pymc or做这个的直接方法scikit-learn

4

1 回答 1

2

如果我正确理解您想要什么,您可以使用 git 版本的 PyMC (PyMC3) 和 glm 子模块来执行此操作。例如

import numpy as np
import pymc as pm
import matplotlib.pyplot as plt 
from pymc import glm 

## Make some data
x = np.array(range(0,50))
y = np.random.uniform(low=0.0, high=40.0, size=50)
y = 2*x+y
## plt.scatter(x,y)

data = dict(x=x, y=y)
with pm.Model() as model:
    # specify glm and pass in data. The resulting linear model, its likelihood and 
    # and all its parameters are automatically added to our model.
    pm.glm.glm('y ~ x', data)
    step = pm.NUTS() # Instantiate MCMC sampling algorithm
    trace = pm.sample(2000, step)


##fig = pm.traceplot(trace, lines={'alpha': 1, 'beta': 2, 'sigma': .5});## traces
fig = plt.figure()
ax = fig.add_subplot(111)
plt.scatter(x, y, label='data')
glm.plot_posterior_predictive(trace, samples=50, eval=x,
                              label='posterior predictive regression lines')

得到这样的东西后验预测

您应该会发现这些博客文章很有趣: 12来自我的想法。

编辑 为了获得每个 x 的 y 值,请尝试我从挖掘 glm 源中得到的这个。

lm = lambda x, sample: sample['Intercept'] + sample['x'] * x ## linear model
samples=50 ## Choose to be the same as in plot call
trace_det = np.empty([samples, len(x)]) ## initialise
for i, rand_loc in enumerate(np.random.randint(0, len(trace), samples)):
    rand_sample = trace[rand_loc]
    trace_det[i] = lm(x, rand_sample)
y = trace_det.T
y[0]

道歉,如果它不是最优雅的 - 希望你能遵循逻辑。

于 2014-03-05T16:11:52.157 回答