3

我正在使用 R 中的 caret 包来训练径向基 SVM 进行分类;此外,线性支持向量机用于变量选择。使用 metric="Accuracy",这可以正常工作,但最终我对优化 metric="ROC" 更感兴趣。虽然 ROC 是针对所有适合的模型计算的,但聚合 ROC 值似乎存在一些问题。

以下是一些示例代码:

library(caret)
library(mlbench)

set.seed(0)

data(Sonar)
x<-scale(Sonar[,1:60])
y<-as.factor(Sonar[,61])

# Custom summary function to use both
# defaultSummary() and twoClassSummary
# Also input and output of summary function are printed

svm.summary<-function(data, lev = NULL, model = NULL){
 print(head(data,n=3))
 a<-defaultSummary(data, lev, model)
 b<-twoClassSummary(data, lev, model)
 out<-c(a,b)
 print(out)
 out}

fitControl <- trainControl(
 method = "cv",
 number = 2,
 classProbs = TRUE,
 summaryFunction=svm.summary,
 verbose=T,
 allowParallel = FALSE)

# Ranking function: Rank Variables using a linear 
# SVM 

rankSVM<-function(object,x,y) {
 print("ranking")
 obj<-ksvm(x=as.matrix(x), y=y, 
  kernel=vanilladot,
  kpar=list(), C=10,
  scaled=F)
 w<-t(obj@coef[[1]]%*%obj@xmatrix[[1]])
 z<-abs(w)/sqrt(sum(w^2))
 ord<-order(z,decreasing=T)
 data.frame(var=dimnames(z)[[1]][ord],Overall=z[ord])
}


svmFuncs<-getModelInfo("svmRadial",regex=F)

svmFit<-function(x,y,first,last,...) {
 out<-train(x=x,y=as.factor(y),    
  method="svmRadial",
  trControl=fitControl,
  scaled=F,
  metric="Accuracy",
  maximize=T,
  returnData=T)
  out$finalModel}

selectionFunctions<-list(summary=svm.summary,
 fit=svmFit,
 pred=svmFuncs$svmRadial$predict,
 prob=svmFuncs$svmRadial$prob,
 rank=rankSVM,
 selectSize=pickSizeBest,
 selectVar=pickVars)                         

selectionControl<-rfeControl(functions=selectionFunctions,
 rerank=F,
 verbose=T,
 method="cv",
 number=2)

subsets<-c(1,30,60)

svmProfile<-rfe(x=x,y=y,
 sizes=subsets,
 metric="Accuracy",
 maximize=TRUE,
 rfeControl=selectionControl)

svmProfile

最终输出如下:

> svmProfile

Recursive feature selection

Outer resampling method: Cross-Validated (2 fold) 

Resampling performance over subset size:

Variables Accuracy  Kappa ROC   Sens   Spec AccuracySD KappaSD ROCSD  SensSD SpecSD Selected
        1   0.8075 0.6122 NaN 0.8292 0.7825    0.02981 0.06505    NA 0.06153 0.1344        *
       30   0.8028 0.6033 NaN 0.8205 0.7825    0.00948 0.02533    NA 0.09964 0.1344         
       60   0.8028 0.6032 NaN 0.8206 0.7823    0.00948 0.02679    NA 0.12512 0.1635         

The top 1 variables (out of 1):
V49

ROC 是 NaN。检查输出(因为 verbose=T 并且汇总函数被修补以显示其输出和部分输入)显示,在调整内部循环中的 SVM 时,ROC 似乎计算正确:

+ Fold1: sigma=0.01172, C=0.25 
  pred obs         M         R
1    M   R 0.6658878 0.3341122
2    M   R 0.5679477 0.4320523
3    R   R 0.2263576 0.7736424
 Accuracy     Kappa       ROC      Sens      Spec 
0.6730769 0.3480826 0.7961310 0.6428571 0.7083333 
- Fold1: sigma=0.01172, C=0.25 
+ Fold1: sigma=0.01172, C=0.50 
  pred obs         M         R
1    M   R 0.7841249 0.2158751
2    M   R 0.7231365 0.2768635
3    R   R 0.3033492 0.6966508
 Accuracy     Kappa       ROC      Sens      Spec 
0.7692308 0.5214724 0.8407738 0.9642857 0.5416667 
- Fold1: sigma=0.01172, C=0.50 

[...]

外部迭代似乎有问题。“在”两次折叠之间,我们得到以下信息:

-(rfe) fit Fold1 size:  1 
  pred obs Variables
1    M   R         1
2    M   R         1
3    M   R         1
 Accuracy     Kappa       ROC      Sens      Spec 
0.7864078 0.5662328        NA 0.8727273 0.6875000 
  pred obs Variables
1    R   R        30
2    M   R        30
3    M   R        30
 Accuracy     Kappa       ROC      Sens      Spec 
0.7961165 0.5853939        NA 0.8909091 0.6875000 
  pred obs Variables
1    R   R        60
2    M   R        60
3    M   R        60
 Accuracy     Kappa       ROC      Sens      Spec 
0.7961165 0.5842783        NA 0.9090909 0.6666667 
+(rfe) fit Fold2 size: 60 

所以这里似乎汇总函数的输入是一个不包含类概率而是包含变量数量的矩阵,因此无法正确计算/聚合 ROC。有人知道如何防止这种情况吗?我是否忘记告诉插入符号在某个地方输出类概率?

非常感谢您的帮助,因为 caret 确实是一个很酷的软件包,如果我能让它正确运行,它将为我节省大量工作。

托拉尔夫

4

1 回答 1

4

getModelInfo旨在获取代码train并且不会自动使用rfe(我将在文档中对此进行说明)。rfe不寻找称为插槽probs并且没有概率预测意味着不是 ROC 总结。

您可能希望将您的代码基于caretFuncs,它旨在与rfe我认为您想做的很多事情一起工作并且应该自动化。

例如,在 中caretFuncspred模块将创建类别和概率预测:

function(object, x) {
  tmp <- predict(object, x)
  if(object$modelType == "Classification" &
     !is.null(object$modelInfo$prob)) {
         out <- cbind(data.frame(pred = tmp),
                      as.data.frame(predict(object, x, type = "prob")))
         } else out <- tmp
      out
  }

您也许可以简单地将您的插件rankSVM插入caretFuncs$rank.

看看网站上的功能选择页面。它包含有关您将需要哪些代码模块的详细信息。

于 2014-02-09T03:27:14.843 回答